Investigating variability of fatigue indicator parameters of two-phase nickel-based superalloy microstructures

نویسندگان

  • Bin Wen
  • Nicholas Zabaras
چکیده

Variability of fatigue properties of Nickel-based superalloys induced by microstructure feature uncertainties is investigated. The microstructure at one material point is described by its grain size and orientation features, as well as the volume fraction of the c0 phase. Principal component analysis (PCA) is introduced to reduce the dimensionality of the microstructure feature space. PCA and kernel PCA (KPCA) techniques are presented and compared. Reduced representations of input features are mapped to uniform or standard Gaussian distributions through polynomial chaos expansion (PCE) so that the sampling of new microstructure realizations becomes feasible. A crystal plasticity constitutive model is adopted to evaluate fatigue properties of two-phase superalloy microstructures under cyclic loading. The fatigue properties are measured by strain-based fatigue indicator parameters (FIP). Adaptive sparse grid collocation (ASGC) and Monte Carlo (MC) methods are used to establish the relation between microstructure feature uncertainties and the variability of macroscopic properties. Convergence with increasing dimensionality of the reduced surrogate stochastic space is studied. Distributions of FIPs and the convex hulls describing the envelope of these parameters in the presence of microstructure uncertainties are shown. 2011 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An image-based method for modeling the elasto-plastic behavior of polycrystalline microstructures based on the fast Fourier transform

An efficient full-field method of computing the local and homogenized macroscopic responses of elasto-plastic polycrystalline microstructures based on the fast Fourier transform (FFT) algorithm is presented. This approach takes realistic microstructure images as the input and estimates the mechanical response/properties of polycrystal microstructures under periodic boundary conditions without r...

متن کامل

Fatigue Behavior and Life Prediction Model of a Nickel-Base Superalloy under Different Strain Conditions

The fatigue behavior of a nickel-base superalloy was investigated under total strain-controlled mode at high temperature. The fatigue life, cyclic stress response behavior and hysteresis loop of the superalloy were investigated under isothermal low cycle fatigue (LCF) conditions. The superalloy exhibited cyclic hardening and softening behaviors during the process of fatigue loading. The hystere...

متن کامل

Effect of Heat Treatment Process on Microstructure and Fatigue Behavior of a Nickel-Base Superalloy

The study of fatigue behaviors for nickel-base superalloys is very significant because fatigue damage results in serious consequences. In this paper, two kinds of heat treatment procedures (Pro.I and Pro.II) were taken to investigate the effect of heat treatment on microstructures and fatigue behaviors of a nickel-base superalloy. Fatigue behaviors were studied through total strain controlled m...

متن کامل

Influence of Solidification Conditions on TCP Phase Formation, Casting Porosity and High Temperature Mechanical Properties in a Re-Containing Nickel-Base Superalloy with Columnar Grain Structure

A coarse and a fine dendrite structure were produced using the newly developed DS-superalloy ExAl7 ( IN792 with 2-3 wt.-% Re) by changing the conditions of directional solidification. The two microstructures differed in their primary dendrite arm spacing by a factor of 1.6. During aging, very fine TCP phase precipitates (length approximately 20 m, volume fraction ~ 1 %) were precipitated in the...

متن کامل

An energy-based microstructure model to account for fatigue scatter in polycrystals

Scatter observed in the fatigue response of a nickel-based superalloy, U720, is linked to the variability in the microstructure. Our approach is to model the energy of a persistent slip band (PSB) structure and use its stability with respect to dislocation motion as our failure criterion for fatigue crack initiation. The components that contribute to the energy of the PSB are identified, namely...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011